普通外科

利用深度学习自动腹部分割进行身体组成分析

作者:佚名 来源:MedSci梅斯 日期:2019-06-18
导读

         本研究旨在建立并评价一种分割CT图像腹部成分的全自动算法。 本研究基于U网结构的卷积神经网络进行训练来对2430例CT检查腹部数据进行分割,并在270例CT检查进行验证。随后又对额外的2369例肝细胞肝癌(HCC)患者进行验证。利用双因素方差分析评价分割效果差异。 结果为,与参照分割比较,本研究模型Dice评分在测试组皮下、肌肉及内脏脂肪组织成分分别为0.98 0.03、0.96 0.02、

关键字:  腹部 

        本研究旨在建立并评价一种分割CT图像腹部成分的全自动算法。

        本研究基于U网结构的卷积神经网络进行训练来对2430例CT检查腹部数据进行分割,并在270例CT检查进行验证。随后又对额外的2369例肝细胞肝癌(HCC)患者进行验证。利用双因素方差分析评价分割效果差异。

        结果为,与参照分割比较,本研究模型Dice评分在测试组皮下、肌肉及内脏脂肪组织成分分别为0.98 ± 0.03、0.96 ± 0.02、、0.97 ± 0.01,在HCC组皮下、肌肉及内脏脂肪组织成分分别为0.94 ± 0.05、0.92 ± 0.04、0.98 ± 0.02。分割效果满足或超过专家人工分割。

        本研究表明,该模型分割效果满足甚至超过专家人工分割效果。该模型能够全自动定量评价3D CT检查的身体成分。

        原始出处:

        Weston AD, Korfiatis P, Kline TL,et al.Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning.Radiology.DOI:10.1148/radiol.2018181432

分享:

copyright©Online Casino论坛网 版权所有,未经许可不得复制、转载或镜像 京ICP证120392号 京公网安备11010502031486号

京卫网审[2013]第0193号

互联网药品信息服务资格证书:(京)-经营性-2012-0005

//站内统计 //百度统计 //站长统计
*我要反馈: 姓    名: 邮    箱: